
<Insert Picture Here>

Deploying applications

Overview of Deployment

• Two views of deployment:

• Developers

• Development environment

• Single stand-alone machine

• Deploy over and over again at will during

the testing phase

• Administrators

• Production environment

• Multiple WebLogic Server instances

or clusters

• Deploy infrequently during maintenance

schedules

2

Deployment Methods

• WLS supports following deployment methods:

• Weblogic Console deployment

• Command-line deployment (WLST, weblogic.Deployer

class, wldeploy Ant task)

• Auto deployment folder

• Applications and EJBs can be deployed in an:

• Archived file (.ear, .war, .jar)

• Exploded (open) directory format

3

Weblogic Console Deployment

• Deploying with the console allows full administrator

control:

• Installation of an application from a location of your choice

• Manual configuration of the application name

• Targeting the application to individual servers or clusters, or

both

• Configuring the application without targeting it

• Activating deployment when desired

4

Deployment with weblogic.Deployer

• Prepare and deploy a new application:
java weblogic.Deployer -adminurl t3://adminserver:7001

-username myuser -password welcome1 -name HRServices

-source /usr/HRServices.ear -targets serverA -deploy

• Redeploy an application:
java weblogic.Deployer -adminurl t3://adminserver:7001

-username myuser –password welcome1 –name HRServices

-redeploy

• Undeploy an application:
java weblogic.Deployer -adminurl t3://adminserver:7001

-username myuser –password welcome1 –name HRServices

-undeploy

• To list all deployed applications:
java weblogic.Deployer -adminurl t3://localhost:7001

-username myuser -password welcome1 -listapps

5

Deploying an Application with WLST

6

##

WLST script for Deploying Java EE Application

##

Connect to the server

print 'Connecting to server '

connect('weblogic','welcome1','t3://localhost:7001')

appname = "mbeanlister"

applocation = "c:/domains/MedRecDomain/apps/mbeanlister"

Start deploy

print 'Deploying application ' + appname

deploy(appname, applocation, targets='myserver',

planPath='c:/myapps/plan/plan.xml')

print 'Done Deploying the application '+ appname

exit()

• Deploy an application (deployapp.py):

Autodeployment

7

• By default, the autodeployment feature is enabled only if the

domain is not running in production mode.

• When enabled:

• The administration server monitors its “autodeploy” folder for

new, updated, or removed applications

• Applications are targeted only to the administration server

• Developers can quickly test or experiment with an application

• <WL_HOME>/user_projects/domains/domain/autodeploy

FastSwap and On-Demand Deployment

• WebLogic’s FastSwap feature is:

• Enabled using the WebLogic deployment descriptors

• Available only if the domain is not running in production

mode

• Applicable only to Web applications that are not archived

• When enabled:

• WebLogic automatically reloads the modified Java class

files within applications

• Developers can perform iterative development without an

explicit redeployment

• On-demand deployment:

• weblogic.xml:
<fast-swap>true</fast-swap>

8

Deployment Plan

• Java EE deployment plan:

• Is an optional XML file associated with an application

• Resides outside an application archive

• Sets or overrides the values in the Java EE deployment

descriptors

• Allows a single application to be easily customized to multiple

deployment environments

9

Deployment Plan

10

Oracle WebLogic Server

Development
uses
DevDataSource

Oracle WebLogic Server

Staging
uses
GADataSource

Oracle WebLogic Server

Testing
uses
QADataSource

No Plan

QAPlan.xml

<variable>

<name>

myresource

</name>

<value>

QADataSource

</value>

</variable>

ProductionPlan.xml

<variable>

<name>

myresource

</name>

<value>

GADataSource

</value>

</variable>

<variable>

<name>

myIdleTimeout

</name>

<value>

200

</value>

</variable>

1 2 3

MyEJB.jar

contains the deployment descriptor
weblogic-ebj-jar.xml.

Sample Deployment Plan

11

Creating Deployment Plan

• Tools for creating a deployment plan:

• Development tool—for example, JDeveloper or Eclipse

• weblogic.PlanGenerator

• Administration Console

• Goals for creating a deployment plan:

• To expose the external resource requirements of the

application as variables in the deployment plan

• To expose additional configurable properties, such as

tuning parameters as variables in the deployment plan

12

Production Redeployment
Side by Side Deployment

• Multiple application versions can co-
exist
• New client requests are routed to

active version;
Existing client requests can finish up
with existing version

• Automatic Retirement Policy:
Graceful, Timeout

• Test application version before
opening up for business

• Rollback to previous application
version

• Two versions of the application can
be active at any given point of time

Production Redeployment

• To support the production redeployment strategy, Oracle

WebLogic Server now recognizes a unique version string
entry in the Enterprise MANIFEST file.

• When a redeployment operation is requested, Oracle

WebLogic Server checks the version string to determine

whether to deploy a new version of the application.

• Production redeployment is performed automatically if:

• An application supports production redeployment

• Its deployment configuration is updated with changes to

resource bindings

• This occurs even if no version string is specified in the

application’s manifest file.

14

In-place Partial Redeployment

• Classloader hierarchy enables
redeployment flexibility

• Web applications can be redeployed
without redeploying the EJB tier

• The JSP class has its own
classloader, which is a child of the
Web application classloader. This
allows JSPs to be individually
reloaded.

• Newer versions of application
modules such as EJBs can be
deployed while the server is running

• Custom classloader hierarchies
provide even more flexibility

System ClassLoader

Application

ClassLoader

Web CL Web CL

JSP CL
JSP CL

JSP CL

JSP CL
JSP CL

EJB1

EJB2 CL

