
WebLogic Server 11gR1 Diagnostics Lab

Overview

The following hands-on labs are intended to provide an introduction to the
WebLogic Server Diagnostic Framework (WLDF), a framework of diagnostic
utilities built into the WebLogic Server architecture. The labs are intended to give
you practice in configuring the major features of WLDF and to provide a template
for configuring diagnostics for your own WebLogic Server domains.

There are 13 labs in all. These cover:

1. Browsing WebLogic Server MBeans
2. Changing WebLogic Server Debug settings
3. Configuring a JDBC Diagnostic Archive
4. Creating a System Diagnostic Module
5. System-Scoped Diagnostic Monitors (WLDF Profiles)
6. Enabling Application-Scoped Instrumentation
7. Exporting and Transforming WLDF Event Data
8. Configuring Collected Metrics Harvesting
9. Exporting and Transforming WLDF Collected Metrics Data
10. Creating a Diagnostic Watch
11. Configuring WLDF Notifications

The lab materials are included in a zipped archive file (DiagnosticLab.zip). You
can unzip this and store it anywhere on your local machine, this folder will be
referred below as %LAB_HOME%. In it, you will find the following folders:

Apps – Web apps used in the labs
Notifications – Utility classes and scripts for handling notifications
Profiles – Copies of WebLogic Server standard diagnostic profiles
Shortcuts – A number of useful MS-Windows shortcuts for starting servers etc.
SQL – SQL scripts for creating database schemas
Transforms – XSLT stylesheets for viewing WLDF archive data
Utilities – Useful diagnostic tools for WebLogic Server

Lab Setup – Setting Up the DiagnosticsLab Domain

Create a simple WebLogic Server 11gR1 domain using the Configuration Wizard.
All you need for this lab is a simple domain with one server – in this guide we will
assume that you have created a domain, with the following settings:

 Domain name: DiagnosticsLab

 Administrator credentials: weblogic/weblogic1

 Development mode, JRockit SDK

 AdminServer, listen port: 7001

 Do not configure managed servers, clusters and machines

When you have created the domain, before starting the AdminServer, we want to
make a number of edits to %DOMAIN_HOME%/bin/setDomainEnv.cmd:

Use JRockit to enable Thread Dumps
Add the following line:
 set JAVA_VENDOR=Oracle
near the beginning of the file, before the line:
 if "%JAVA_VENDOR%"=="Oracle" (

Enable Fastswap to work with WLDF
Look for the line:
 set enableHotswapFlag=
and change it this way:
 set enableHotswapFlag=-javaagent:%WL_HOME%\server\lib\diagnostics-
agent.jar

Disable wsee async response (BEA-22013) warnings
Add –Dweblogic.wsee.skip.async.response=true to the JAVA_PROPERTIES
environment variable:
 set JAVA_PROPERTIES=-Dplatform.home=%WL_HOME% -
Dwls.home=%WLS_HOME% -Dweblogic.home=%WLS_HOME% -
Dweblogic.wsee.skip.async.response=true

Modify the file paths for the shortcuts provided inside
%LAB_HOME%/Shortcuts , these shortcuts will be used through all the lab
exercises

Lab 1- Browsing WebLogic Server MBeans

In this exercise, you will practice browsing the WebLogic Server MBean trees.
Start Diagnotics domain‟s AdminServer (you can use
%LAB_HOME%\Shortcuts\Admin Server.lnk)
For this exercise, we will use both WLST and WLNav, an open-source utility
originally developed by WebLogic Server consultants.. You will find a copy of
WLNav in the %LAB_HOME%/Utilities folder.

WLNav is packaged as a web app archive (WLNav.war) and you can deploy it
easily using either the admin console Deployments page or the following
weblogic.Deployer command (don‟t forget to call setDomainEnv.cmd first):
java weblogic.Deployer -username weblogic -password weblogic1 -targets
AdminServer -deploy %LAB_HOME%\Utilities\wlnav.war

You should also deploy browsestore and shopping applications, located in
%LAB_HOME%\apps
java weblogic.Deployer -username weblogic -password weblogic1 -targets
AdminServer -deploy %LAB_HOME%\Apps\Browsestore\app\browsestore.war

java weblogic.Deployer -username weblogic -password weblogic1 -targets
AdminServer -deploy %LAB_HOME%\Apps\Shopping\app\ShoppingCart.war

Browse to http://localhost:7001/wlnav and you should see something like this:

Enter the password for the DiagnosticsLab AdminServer („weblogic1‟) and click
the „login‟ button. You should now see the main WLNav screen, which looks like
this:

http://localhost:7001/wlnav

You can switch between the various MBean trees (e.g. Server Runtime/Config,
Domain Runtime/Config) by clicking on the tabs at the top of the screen. Try
selecting the ServerRuntime MBeans, then click on the ApplicationRuntimes link,
then select an application (browsestore.war). Next click on ComponentRuntimes
-> AdminServer -> browsestore to view runtime information about the instance of
the browsestore.war application currently running on AdminServer.
Next click on Servlets->Welcome.jsp, scroll down to view the Attributes in the
pane on the right of the screen. For example, you can see the
InvocationTotalCount attribute. Open a browser to
http://localhost:7001/browsestore, refresh the WLNav browser window and you
will see InvocationTotalCount incremented by one.

Next, we will see how you can use weblogic.WLST to view the MBean tree in
exactly the same way. We will take advantage of WLNav‟s History tab: click on
the tab at the top marked „History‟ and then scroll all the way down to the bottom
of the main pane. You should see a complete history of all the WLST commands
that WLNav has used to browse the MBean tree:

http://localhost:7001/browsestore

We will use the WLST commands (highlighted in purple) to navigate the MBean
tree with WLST in online mode. Open a command shell, set your environment
with setDomainEnv.cmd (or use the shortcut provided) and enter the following
commands (you should see the WLST output as well, but I have left it out here
for clarity):

>java weblogic.WLST
wls:/offline>connect („weblogic‟, „weblogic1‟, „t3://localhost:7001‟)
wls:/DiagnosticLab/serverConfig>cd („serverRuntime:/ApplicationRuntimes‟)
wls:/DiagnosticLab/serverRuntime/ApplicationRuntimes>ls()
wls:/DiagnosticLab/serverRuntime/ApplicationRuntimes>cd(‟browsestore.war‟)
wls:/…> ls()
wls:/…> cd(„ComponentRuntimes‟)
wls:/…> ls()
wls:/…> cd(„AdminServer_/browsestore‟)
wls:/…> ls()

You should see all the attributes for the browsestore application running on the
AdminServer displayed like this:

Experiment by browsing around the WebLogic Server MBean trees using WLNav
and/or WLST: don‟t forget, if you have problems with the syntax for WLST, just
use WLNav and look up the command history.

When you have finished, disconnect from WLST with the following commands:

wls:/…> disconnect()
wls:/offline> exit()

Lab 2 – Changing WebLogic Server Debug settings

Start the DiagnosticsLab AdminServer and logon to the admin console. Navigate
to the Environment -> Servers ->AdminServer page and select the Debug tab.
This screen allows you to set the various debug flags that will cause WebLogic
Server to output detailed debug messages from its subsystems. You should see
two nodes: „default‟ and „weblogic‟. Click on the „+‟ sign to expand the „weblogic‟
node and you should see a list of subsystems like this:

You can use this page to change WebLogic Server‟s debug settings dynamically.
You would usually start by enabling debugging at the subsystem level; however,
this will typically produce a great deal of output and so you will usually want to
turn on particular debug flags within a given subsystem while turning off debug at
the subsystem level, once you have isolated the problem or area you wish to
investigate.

For this lab, try turning on debugging for the „diagnostics‟ subsystem as a whole.
If you expand the „diagnostics‟ node, you will see that this covers a whole set of
debug options as shown in the following screenshot:

Here we have specifically enabled debug messages for the instrumentation
module as well as turning on debugging for the diagnostics subsystem as a
whole. This means that all the other modules also have debug enabled. As you
will see, this produces a great deal of output and you may want to limit that by
turning off the debug flag for the diagnostics subsystem as a whole. Try
experimenting with other debug options: other subsystems of interest might be
„servlet‟, „deploy‟ or „application‟.

To view the debug messages, select the „Logging‟ tab (next to „Debug‟), scroll
down and expand the „Advanced‟ section. Change the Minimum severity to log
to „Debug‟ so that the debug messages appear in the server‟s log located in
%DOMAIN_HOME%\servers\AdminServer\logs\AdminServer.log. If you watch
the log as you work your way through the lab, you will see all the various
diagnostic messages.

Lab 3 – Configuring a JDBC Diagnostic Archive

In this lab, you will configure your local Oracle Database 10g XE instance to act
as a WLDF Diagnostic Archive. If you haven‟t already done so, please install
Oracle Database 10g XE on your local system, and run OracleXETNSListener
and OracleServiceXE windows services.

 Go to http://localhost:8080/apex/ , enter your system as username and
systems‟s password.

 Navigate to Administration->Database Users and click Create button.

 create a user „weblogic‟ with password „weblogic‟, grant CONNECT and
RESOURCE roles to it.

 Open command prompt and run sqlplus with weblogic user‟s credentials.
You should logged in successfully.

http://localhost:8080/apex/

 Before creating the data source to use for the Diagnostic Archive, you

need to create the database schema that WebLogic Server will use to
store its diagnostic data. WebLogic Server uses two tables: WLDF_HVST
(to store WLDF harvested metric data) and WLS_EVENTS (to store
WLDF event data). A SQL script to create these tables is available in
%LAB_HOME%\SQL\WLDF_Data_Archive_Oracle.ddl.
Execute this script from sqlplus to create the tables.

When you have created the database schema, use the admin console to create a
new data source to use for the JDBC Diagnostic Archive.

 Navigate to the Services-> Data Sources page and select New->Generic
Data Source.

 Set Name = ArchiveDS, JNDI Name = ArchiveDS, Database type =
Oracle, click Next

 Use the default database driver, click Next twice

 Enter the following in the Connection Properties page: Database name =
XE, Host Name = localhost, port = 1521, database username = weblogic,
password = weblogic. Click Next

 Press Test Configuration button. You should see the message
“Connection Test Succeeded”. Click Next.

 Select AdminServer as a target, click Finish.

When you have created the JDBC data source (ArchiveDS), configure a JDBC
Diagnostic Archive using the admin console:

 navigate to Diagnostics -> Archives

 select AdminServer

 set Type = JDBC, Data Source = ArchiveDS, click Save.
Restart the AdminServer server to consume this configuration change.

Lab 4 – Creating a System Diagnostic Module

To use the WebLogic Diagnostic Framework on AdminServer, you need to create
a System Diagnostic Module.

 Log on to the admin console and go to Diagnostics -> Diagnostic Modules.

 Create New button, name your new Diagnostic Module
DiagnosticLabModule and click Ok.

 Click on the newly created module and go to the Targets tab.

 Set AdminServer.as a target for the module, click Save.

Notice that besides the „General‟ tab, there are three additional tabs that you use
to configure Metrics; Watches and Notifications; and Instrumentation at a server
level. We will work with each of these in turn, but note that you can control the
operation of the WebLogic Diagnostic Framework at the server level by enabling
or disabling these features in the system diagnostic module.

To see how the configuration for the diagnostic subsystem is persisted, open a
file browser and go to the <domain_home>/config/diagnostics folder to view the
configuration files. There will be a file called DiagnosticLabModule-<x>.xml and
if you open this you will see that it contains the configuration for the diagnostic
subsystem. As you progress through the lab exercises, you may want to return
and view this file to see how WebLogic Server stores its diagnostic configuration.
Here is an example of a diagnostic system module with instrumentation, watch,
notification and harvester elements configured.

Lab 5 – System-Scoped Diagnostic Monitors (WLDF
Profiles)

WebLogic Server 11gR1 ships with a number of example WLST scripts that you
can use to configure diagnostic data gathering for most of the major subsystems.

These can be found with the WebLogic Server 11gR1 examples:
%MIDDLEWARE_HOME%/wlserver_10.3/samples/server/examples/src/example
s/diagnostics/wldfprofiles/src
You will also find a copy of these scripts in the %LAB_HOME%/Profiles folder,
for use with the labs.

There are a number of Jython files with utility classes used to create, enable and
disable WLDF diagnostic profiles as well as WLST scripts to create notifications
using SMTP (email) and SNMP (network management) notifications. We will
look at how to configure various notification methods in the following labs, so for
now let‟s concentrate on the WLST scripts to enable/disable diagnostic metric
and event data collection for the major WebLogic subsystems (Core, EJB, JDBC,
JMS, JTA, WebApp and Web Services). There is a WLDF Profiles Overview
document in the
%MIDDLEWARE_HOME%/wlserver_10.3/samples/server/examples/src/example
s/diagnostics/wldfprofiles directory (Instructions.html): this has more detail on the
different profiles and how to use them. As you will see, It is very easy to use
these diagnostic profiles with any WebLogic Server domain.

Open a command shell (set your environment with setDomainEnv.cmd), cd to
%LAB_HOME%/Profiles and run the following weblogic.WLST command to
enable all profiles on AdminServer:

>java weblogic.WLST enableAllProfiles.py user="weblogic" pass="weblogic1"
url="t3://localhost:7001" wldfResource="DiagnosticLabModule"
targets="AdminServer" harvesterPeriod=60000

You should see several screens of output messages from WLST, rather like this:

Now open the admin console and navigate to the Diagnostics -> Diagnostic
Modules page; click on DiagnosticLabModule to view the new configuration and
start by selecting the Collected Metrics tab. You will see a number of key
WebLogic Server metrics are now being collected, like this:

Click on one of the metric sets (e.g. JDBCDataSourceRuntimeMBean) and notice
that the system has been configured to collect metrics on all available attributes
of this runtime MBean, which will provide a wealth of data about the health and
performance of the JDBC subsystem:

To collect JDBC metric data on the ArchiveDS data source you created earlier,
all you now have to do is switch to the Instances tab and move the MBean
instance from „Available‟ to „Chosen‟ and Save. Remember to check that the
Metric („JDBCDataSourceRuntimeMBean‟) has been enabled and that metric
collection is also enabled in the system diagnostic module.

If you now return to the DiagnosticLabModule page and select the Watches and
Notifications tab, you will see that a number of WLDF watches have also been
configured:

Click on one of these to view the configuration (for example, JRockitHeapWatch)
and then select the Rule Expression tab to view the definition of the watch rule.
In this case, it is:
${[weblogic.management.runtime.JRockitRuntimeMBean]//HeapFreePercent} <
10
This means that WLDF will watch for a condition where JRockit is reporting that
less than 10% of the available heap memory is free. Remember that you can
always enable/disable this particular watch, and you can also enable/disable all
watches in the configuration for the system diagnostic module. The watch is now
configured and you can easily create notifications that will fire if the watch rule
evaluates to true (we will see how to do this later). The diagnostic profile script
will already have created two notifications, using JMX and SNMP, and you now
only have to complete the configuration for those notifications (for example,
providing javamail properties for the SMTP notification).

You might like to revisit the system diagnostic module‟s configuration file
<domain_home>/config/diagnostics/DiagnosticLabModule-<x>.xml to view the
changes that have been added to the system diagnostic descriptor.

Lab 6 – Enabling Application-Scoped Instrumentation

One of the powerful features of the WebLogic Diagnostic Framework is its ability
to support instrumentation of application code, using the AspectJ implementation
of the Aspect-Oriented Programming (AOP) model. Essentaily, this enables you
to define various diagnostic actions (such as trace messages, display arguments
and return values, elapsed time statistics, stack traces and thread dumps) that
are to be executed whenever any method matching a particular pattern (called a
„pointcut‟) is called or executed. There is no need to make any modifications to
the application source code and in fact instrumentation can be enabled on an
application deployed as a packaged Java archive (such as an .ear or .war file).

WebLogic Server provides an abstraction layer to simplify the task of configuring
application instrumentation, using constructs called diagnostic monitors which
are pre-configured to execute certain diagnostic actions, leaving the programmer
or administrator to specify only the context in which diagnostic traces are wanted.
It is possible to configure system-scoped diagnostic monitors that will execute,
for example, whenever any servlet session is created, or whenever a JDBC
connection is started. This makes it easy to configure application instrumentation
but often these system-scoped diagnostic monitors produce too much diagnostic
data, particularly in a large and complicated application. In such cases, it is often
better to use application-scoped instrumentation, which allows more fine-grained
control over the diagnostic data that is generated.

In this lab, you will, learn how to configure application-scoped instrumentation for
custom applications. We will work with the browsestore and ShoppingCart web
applications – these are simple webapps that contain a number of Java classes
that implement the servlet interface. We will configure instrumention to gather
diagnostic data on these servlet classes.

You will find a copy of the browsestore application in the %LAB_HOME%/apps
folder. You will find a folder called browsestore with two sub-folders, app and
plan: the first contains browsestore.war in exploded .war format and the second
will contain the Deployment Plan, which we will use to reconfigure the diagnostic
module later on. We will not be versioning the app, so this directory structure will
suffice for now.

Remember that you configured the domain to support Fastswap with the
WebLogic Diagnostic Framework: this means that changes to compiled Java
classes automatically reloaded via Fastswap can contain instrumentation –
WebLogic Server‟ will invoke the AspectJ compiler to „weave‟ the instrumentation
into the newly-compiled classes.

First note that we have to enable Fastswap in the app‟s WEB-INF/weblogic.xml
deployment descriptor, as follows:

<?xml version='1.0' encoding='UTF-8'?>
<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <fast-swap/>
</weblogic-web-app>

To enable instrumentation, an additional deployment descriptor is added to the
app‟s META-INF directory, called weblogic-diagnostics.xml. Open this file with a
browser or XML editor and look at the <instrumentation> section, which defines
the application-scoped instrumentation for this application:

<instrumentation>

 <enabled>true</enabled>
 <include>com.servlets.*</include>

 <wldf-instrumentation-monitor>
 <name>ServletArgs</name>
 <enabled>true</enabled>
 <action>DisplayArgumentsAction</action>
 <location-type>before</location-type>
 <pointcut>call(* com.servlets.* get*(...));</pointcut>
 </wldf-instrumentation-monitor>

 <wldf-instrumentation-monitor>
 <name>ServletRetVal</name>
 <enabled>true</enabled>
 <action>DisplayArgumentsAction</action>
 <location-type>after</location-type>
 <pointcut>call(* com.servlets.* get*(...));</pointcut>
 </wldf-instrumentation-monitor>

 <wldf-instrumentation-monitor>
 <name>ServletElapsed</name>
 <enabled>true</enabled>
 <action>TraceElapsedTimeAction</action>
 <location-type>around</location-type>
 <pointcut>call(* com.servlets.* get*(...));</pointcut>
 </wldf-instrumentation-monitor>

 <wldf-instrumentation-monitor>
 <name>ServletStack</name>
 <enabled>true</enabled>
 <action>StackDumpAction</action>
 <location-type>before</location-type>

 <pointcut>call(* com.servlets.* getPaper*(...));</pointcut>
 </wldf-instrumentation-monitor>

 <wldf-instrumentation-monitor>
 <name>ServletThreads</name>
 <enabled>true</enabled>
 <action>ThreadDumpAction</action>
 <location-type>before</location-type>
 <pointcut>call(* com.servlets.* getFurn*(...));</pointcut>
 </wldf-instrumentation-monitor>

 <wldf-instrumentation-monitor>
 <name>ServletStats</name>
 <enabled>true</enabled>
 <action>MethodInvocationStatisticsAction</action>
 <location-type>around</location-type>
 <pointcut>call(* com.servlets.* get*(...));</pointcut>
 </wldf-instrumentation-monitor>

</instrumentation>

The <wldf-instrumentation> stanzas configure diagnostic monitors that will
produce a variety of diagnostic actions (e.g. MethodInvocationStatisticsAction)
whenever any class which matches a certain pattern (or “pointcut”) is called. Of
course, the secret to producing the most useful diagnostic data is to specify the
classes to trace as tightly as possible.

To see the diagnostic monitors in operation, deploy the application using the
admin console.
When you have done so, browse to the Deployments -> browsestore ->
Configuration -> Instrumentation page and note that the diagnostic configuration
from the weblogic-diagnostics.xml descriptor is reflected there:

Make sure that your system diagnostic module (DiagnosticLabModule) has
instrumentation enabled, check it in the Diagnostics -> Diagnostics Modules ->
DiagnosticLabModule -> Instrumentation Tab.

Run the application (http://localhost:7001/browsestore) and browse the store to
generate some diagnostic trace information. You can see the diagnostic data (in
raw form – we will look later at how to extract and refactor that data) by opening
a SQL*Plus command window as weblogic user and running the following SQL
query:
SQL> select monitor, classname, methodname from wls_events;

Because you will be generating a fair amount of diagnostic event data, you may
find it easier to see the diagnostic data being generated if you first truncate the
wls_events table (“SQL> truncate table wls_events; commit;”) before running the
application; you can then view the fresh diagnostic traces by running the SQL
select statement.

http://localhost:7001/browsestore

Lab 7 – Exporting and Transforming WLDF Event Data

Open a command shell and set your environment with setDomainEnv.cmd, CD to
your %LAB_HOME%\Transforms directory. Use WLST to export your diagnostic
event archive to a local XML file:

>java weblogic.WLST
wls:/offline> connect('weblogic','weblogic1','t3://localhost:7001')
wls:/DiagnosticLab/serverConfig>
exportDiagnosticDataFromServer(logicalName='EventsDataArchive',exportFileN
ame='DiagnosticEvents.xml')
wls:/DiagnosticLab/serverConfig> disconnect()
wls:/offline> exit()

Open DiagnosticEvents.xml with a text editor. You will see that the XML file
consists of a <DataInfo> stanza that describes the data that is held in this
diagnostic archive: note how this matches the database schema you can view
using SQL*Plus with the command: „desc wls_events;‟. The rest of the XML file
consists of multiple <DataRecord> stanzas which contain the actual event data.
If you scroll down, you will see the payloads for the StackDumpAction and
ThreadDumpAction events. Add the following Processing Instruction to use the
wldfEvents.xsl Stylesheet provided (in the DiagnosticsLab/Transforms folder):

<?xml-stylesheet type="text/xsl" href="wldfEvents.xsl"?>

The start of the file should now look like this:
<?xml version='1.0' encoding='utf-8'?>
<?xml-stylesheet type="text/xsl" href="wldfEvents.xsl"?>

<DiagnosticData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics/accessor/e
xport.xsd export.xsd"
xmlns="http://www.bea.com/ns/weblogic/90/diagnostics/accessor/Export">
 <DataInfo>
 …

Open the file with a browser and you should see something like this:

Have a quick look at the supplied wldf_events.xsl stylesheet, which you can
customize if you wish to provide a custom view of the WLDF Event data. If you
are familiar with XSLT transforms, you might be interested to look at Phil Aston‟s
excellent article “Mining WebLogic Diagnostic Data with XSLT”, which discusses
how you can use XSLT to generate hierarchical reports from WLDF diagnostic
events:
http://www.oracle.com/technetwork/articles/entarch/mining-wldf-xslt-083813.html

http://www.oracle.com/technetwork/articles/entarch/mining-wldf-xslt-083813.html

Lab 8 – Configuring Collected Metrics Harvesting

Open Admin Console , navigate to Diagnostics-> Diagnostics Modules ->
DiagnosticLabModule->Collected Metrics. Set the Sampling Period to 60000 ms
and check that metrics is enabled

Look through Collected Metrics table and try to find
WebAppComponentRuntimeMBean, If this metric exists, select it and click Delete
button.

Create a Metric based on the ServerRuntimeMBean server:

 Click New

 For the MBean Server Location choose ServerRuntime

 For the MBean type, select custom MBean Type and enter:
weblogic.management.runtime.WebAppComponentRuntimeMBean

 For Collected Attributes, choose: Status, OpenSessionsCurrentCount,
SessionsOpenedTotalCount

 For Collected Instances, use:
com.bea:ApplicationRuntime=Shopping,Name=AdminServer_/ShoppingC
art,ServerRuntime=AdminServer,Type=WebAppComponentRuntime

 Click Finish

Open a few browser windows and run the ShoppingCart application
(http://localhost:7001/ShoppingCart). To make sure our watch rule evaluates to

http://localhost:7001/ShoppingCart

true, we want each browser window to open a new session to the application
server. You can force this behaviour by clearing the browser‟s session cookies
(Firefox: Tools -> Options ->Privacy->Remove Individual Cookies, Internet
Explorer: Tools -> Internet Options -> General -> Delete Cookies) and reloading
the application.
Use the admin console to monitor the number of sessions by navigating to
Deployments -> browsestore -> monitoring -> Sessions. After a couple of
minutes, you should be able to use SQL*Plus to view the WLDF Collected
Metrics with the following SQL command:
SQL> select server, type, name, attrname, attrvalue from wls_hvst;

Lab 9 – Exporting and Transforming WLDF Collected
Metrics Data

Open a command shell and set your environment with setDomainEnv.cmd, CD to
your %LAB_HOME%\Transforms directory. Use WLST to export your diagnostic
collected metrics archive to a local XML file:

 >java weblogic.WLST
wls:/offline> connect('weblogic','weblogic1','t3://localhost:7001')
wls:/DiagnosticLab/serverConfig>
exportDiagnosticDataFromServer(logicalName='HarvestedDataArchive',exportFil
eName='DiagnosticMetrics.xml')
wls:/DiagnosticLab/serverConfig> disconnect()
wls:/offline> exit()

Open DiagnosticMetrics.xml with an editor and add the following processing
instruction to use the wldfMetrics.xsl Stylesheet provided (in the
%LAB_HOME%/Transforms folder):

<?xml-stylesheet type="text/xsl" href="wldfMetrics.xsl"?>

The start of the file should look like this:

<?xml version='1.0' encoding='utf-8'?>
<?xml-stylesheet type="text/xsl" href="wldfMetrics.xsl"?>

<DiagnosticData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/90/diagnostics/accessor/e
xport.xsd export.xsd"
xmlns="http://www.bea.com/ns/weblogic/90/diagnostics/accessor/Export">
 <DataInfo>
 …
Now open the file DiagnosticMetrics.xml with a browser and you should see
something like this:

Lab 10 – Configuring Diagnostic Watches

In this lab, you will use the Admin Console to create a diagnostic watch:
Navigate to Diagnostics -> Diagnostic Modules -> DiagnosticLabModule ->
Watches and Notifications.

 Select the Watches tab and click New:

 Set watch Name: ShoppingWatch, watch Type: Collected Metrics, Enable
Watch: Checked, click Next

 Click Add Expressions Button

 Select MBean Server Location: ServerRuntime

 Mbean Type:
weblogic.management.runtime.WebAppComponentRuntimeMBean

 Instance:
com.bea:ApplicationRuntime=Shopping,Name=AdminServer_/ShoppingC
ard,ServerRuntime=AdminServer,Type=WebAppComponentRuntime

 Message Attribute: OpenSessionsCurrentCount, Operator: >= , Value: 3
This will produce a watch rule:
(${ServerRuntime//[weblogic.management.runtime.WebAppComponentRu
ntimeMBean]com.bea:ApplicationRuntime=Shopping,Name=AdminServer
_/ShoppingCart,ServerRuntime=AdminServer,Type=WebAppComponent
Runtime//OpenSessionsCurrentCount} >= 3)

 Click Finish to go to the Configure Watch page – you could add additional
watch expressions here and combine them to form a compound watch
rule, but for now we‟ll keep it simple. Click on Finish to create the
diagnostic watch.

At this point, you are able to configure an alarm (which enables you to control
how frequently the rule condition will be re-evaluated): you would use the Alarm
tab to do so, but we won‟t do so here. You can also configure Notifications that
you want to fire when the watch rule expression evaluates to true, for example
generating an SNMP trap, sending an email to the system administrator, putting
a message onto a JMS queue or broadcasting a JMX notification. We will set up
a set of notifications in the next lab. After configuring the notifications, you will
hook the watch up to the notifications and test to see these in action.

Lab 11 – Configuring WLDF Notifications

Configuring an SNMP Trap Notification

In this lab, you will configure WebLogic Server to generate SNMP traps that can
be monitored by network monitoring tools (such as HP Openview or IBM Tivoli).
Open the admin console and navigate to Diagnostics -> SNMP -> Agents and
create a new server-scoped SNMP agent as follows:

 Create a new Server SNMP Agent, name it DiagnosticSNMPAgent

 Select newly created DiagnosticSNMPAgent

 Configuration->General tab: SNMP UDP Port: 161, Enabled: checked.
Click Save

 Targets tab: set AdminServer as a target, click Save.

 Go to Configuration->Trap Destination, click New
Enter DiagnosticTrapDestination as a name, Community: public, Host:
localhost, Port: 162. Click OK.

Now we need to create a new diagnostic notification that uses the SNMP trap
destination.

 Navigate to the admin console Diagnostics -> Diagnostic Modules ->
DiagnosticLabModule page and select the Watches and Notification tab

 Then Select Notifications and click on New to create a notification with the
following properties:

 Type: SNMP Trap, Name: LabSNMPNotification, Enabled: checked

Configuring a JMX Notification

In this lab you will configure a JMX notification.
Navigate to the admin console Diagnostics -> Diagnostic Modules ->
DiagnosticLabModule page and select the Watches and Notification tab. Then
Select Notifications and click on New to create a notification with the following
properties:

Name: LabJMXNotification
Type: JMX
Enabled: checked

Receiving SNMP/JMX Notifications

In this lab, you will test the diagnostic watch and notifications configured in the
preceding labs. We have already created a watch (ShoppingWatch) but we need
to hook it up to the newly-created notifications. Navigate to Diagnostics ->
Diagnostic Modules -> LabDiagnosticModule -> Watches and Notifications ->
Watches -> ShoppingWatch ->Notifications and move LabSNMPNotification and
LabJMXNotification from Available to Chosen.

To view broadcast JMX notifications you need to run a custom JMX listener
class. There is one provided in the %LAB_HOME%/Notifications folder along
with a simple command script to run it. You should correct the file paths in the
%LAB_HOME%\Notifications\JMXListener.cmd There is a also a Windows
shortcut in the %LAB_HOME%/Shortcuts folder. Run the JMXListener.

To view SNMP trap notifications, you need to run the WebLogic Server SNMP
commandline utility: java weblogic.diagnostics.snmp.cmdline.Manager. There is
a simple command script to do this in the %LAB_HOME/Notifications folder. You
should correct the file paths in the
%LAB_HOME%\Notifications\SNMPListener.cmd There is also another shortcut
in the DiagnosticLab/Shortcuts folder.

Start three new browser windows (clear private data to ensure servlet sessions
are not shared) and run ShoppingCart: http://localhost:7001/ShoppingCart . Use
the admin console (Deployments -> Shopping -> Monitoring -> Sessions) to
check that there are at least three sessions active:

Wait a short time for the Watch to be evaluated and you should then see the
Watch notifications via JMX, SNMP

http://localhost:7001/ShoppingCart

